Wavelength-Ratiometric Plasmon Light Scattering-Based Immunoassays
نویسندگان
چکیده
The application of a wavelength-ratiometric plasmon light scattering technique to immunoassays is demonstrated. A model immunoassay for anti-immunoglobulin G (IgG), constructed in gold colloid-modified high-throughput screening wells, was monitored by the changes in the intensity of scattered light (with transmitted light) from gold colloids as a result of antibody–antibody interactions. The quantitative determination of anti-IgG was undertaken by measuring the ratio of intensity of scattered light at both 590 and 500 nm. Awhite light-emitting diode (LED) and a fiber optic coupled fluorometer was used as an excitation source and the detection system, respectively. The visual confirmation of the quantitative nature of the measurement technique was done by digital photography. A lower detection limit of 0.05μg/mL for anti-IgG was determined. The wavelengthratiometric plasmon light scattering technique offers several advantages: (1) light at >500 nm can be used for reduced biological autofluorescence; (2) due to the ratiometric nature of these measurements, the fluctuations in the excitation or ambient light do not perturb the measured signal; and (3) with the addition of automated detection systems, multiple samples in a high-throughput format can potentially be assessed quickly and more efficiently.
منابع مشابه
Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations
In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...
متن کاملNanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering.
Gold colloids are well known to display strong plasmon absorption bands due to electron oscillations induced by the incident light. When the colloids are in proximity, the plasmon absorption bands are often perturbed. This has enabled us recently to successfully develop a glucose sensing platform based on the disassociation of dextran-coated gold colloids, cross-linked with Con A, by glucose. H...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملAngular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing.
We describe an exciting opportunity for affinity biosensing using a ratiometric approach to the angular-dependent light scattering from bioactivated and subsequently aggregated noble metal colloids. This new model sensing platform utilizes the changes in particle scattering from very small colloids, which scatter light according to traditional Rayleigh theory, as compared to the changes in scat...
متن کاملEngineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کامل